JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics Analysis of FETI Methods for Multiscale PDEs - Part II: Interface Variation
نویسندگان
چکیده
In this article we give a new rigorous condition number estimate of the finite element tearing and interconnecting (FETI) method and a variant thereof, all-floating FETI. We consider the scalar elliptic equation in a twoor three-dimensional domain with a highly heterogeneous (multiscale) diffusion coefficient. This coefficient is allowed to have large jumps not only across but also along subdomain interfaces and in the interior of the subdomains. In other words, the subdomain partitioning does not need to resolve any jumps in the coefficient. Under suitable assumptions, we can show that the condition numbers of the one-level and the all-floating FETI system are robust with respect to strong variations in the contrast in the coefficient. We get only a dependence on some geometric parameters associated with the coefficient variation. In particular, we can show robustness for so-called face, edge, and vertex islands in high-contrast media. As a central tool we prove and use new weighted Poincaré and discrete Sobolev type inequalities that are explicit in the weight. Our theoretical findings are confirmed in a series of numerical experiments.
منابع مشابه
JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics FETI Solvers for Non-Standard Finite Element Equations Based on Boundary Integral Operators
متن کامل
Eigenvalue Problems in Surface Acoustic Wave Filter Simulations
1 FWF-Start Project Y-192 “3D hp-Finite Elements”, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria [email protected] 2 Radon Institute for Computational and Applied Mathematics (RICAM), Altenbergerstraße 69, 4040 Linz, Austria [email protected] 3 Institute of Computational Mathematics, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria ulanger...
متن کاملDomain Decomposition Solvers for Frequency-Domain Finite Element Equations
1 Institute for Applied Mathematics and Computational Science, Texas A&M University, College Station, USA, [email protected] 2 Institute of Computational Mathematics, Johannes Kepler University, Linz, Austria, [email protected]; [email protected] 3 Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Linz, Austria, ulrich.lan...
متن کاملFast parallel solvers for symmetric boundary element domain decomposition equations
C. Carstensen1, M. Kuhn2, U. Langer3 1 Mathematical Seminar, Christian-Albrechts-University Kiel, Ludewig-Meyn-Str. 4, D-24098 Kiel, Germany; e-mail: [email protected] 2 Institute of Mathematics, Johannes Kepler University Linz, Altenberger Str. 69, A-4040 Linz, Austria; e-mail: [email protected] 3 Institute of Mathematics, Johannes Kepler University Linz, Altenberger Str. 69, A-404...
متن کاملJOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics Weighted Poincaré inequalities
Poincaré type inequalities are a key tool in the analysis of partial differential equations. They play a particularly central role in the analysis of domain decomposition and multilevel iterative methods for second-order elliptic problems. When the diffusion coefficient varies within a subdomain or within a coarse grid element, then condition number bounds for these methods based on standard Po...
متن کامل